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INTRODUCTION
The process, which started with the discovery of the anesthetic 

properties of diethyl ether by William Morton in 1846, as the 

beginning of anesthesia and inhalation anesthesia in the 

medical world, continued to develop with the discovery of many 

anesthetic agents such as chloroform, ethylene, cyclopropane, 

and nitrous oxide (N
2
O) (1,2). After the use of halothane 

in the clinic in 1957, surgical anesthesia was started, and 

methoxyflurane was discovered in 1960. After the occurrence of 

halothane-induced hepatotoxicity and methoxyflurane-induced 

nephrotoxicity, enflurane was synthesized in 1963 and its isomer 

isoflurane was synthesized in 1965 in line with the need for new 

anesthetics (2,3). Sevoflurane and desflurane were developed 

towards the end of the 1960s. They are among the most preferred 

inhalation anesthetics today (2). Intravenous (i.v.) anesthetics also 

continue to evolve with the advancement of pharmacology. First 

generation i.v. agents for anesthesia induction and maintenance 

date back to the introduction of thiopental in the 1930s as an 

alternative to inhaled agents. Since then, barbiturates, propofol, 

ketamine, etomidate, benzodiazepines and dexmedetomidine 

represent i.v. anesthetic and sedative agents. 

New agents will allow us to leave the traditional understanding 

of anesthesia in the background and allow us to respond 

more appropriately to the increasing elderly population and 

increasing population with minimal effects on recovery time 

and cardiovascular side effects. 

1. Inhalation Anesthetics

1.1. N2O, dinitrogen monoxide, nitrogen protoxide

N
2
O is an inorganic inhalation agent that is colorless, odorless 

or sweet-smelling, non-irritating to tissues, non-flammable but 

capable of supporting (4). It does not undergo biotransformation, 

does not bind to hemoglobin, and is transported by dissolving 

in the blood (4). Its elimination is the opposite of uptake and 

distribution. Its low solubility enables rapid elimination (4,5). 

N
2
O, which was defined by Sir Humphry Davy as “laughing/

giggle gas”, was not used for anesthesia in the first half of the 

19th century, but began to be used for analgesic purposes in 

 Abstract

The process, which started with the discovery of the anesthetic properties of diethyl ether by William Morton in 1846, as the beginning of 
anesthesia and inhalation anesthesia in the medical world, continued to develop with the discovery of many anesthetic agents. Sevoflurane 
and desflurane were developed towards the end of the 1960s. They are among the most preferred inhalation anesthetics today. Intravenous 
anesthetics also continue to evolve with the advancement of pharmacology. New agents will allow us to leave the traditional understanding 
of anesthesia in the background and allow us to respond more appropriately to the increasing elderly population and increasing population 
with minimal effects on recovery time and cardiovascular side effects.

Keywords: Inhalation anesthetics, intravenous anesthetics, general anesthesia

1University of Health Seciences Turkey, Prof. Dr. Cemil Taşcıoğlu City Hospital, Clinic of Anesthesiology and Reanimation, İstanbul, Turkey
2Dokuz Eylül University Faculty of Medicine, Department of Anesthesiology and Reanimation, İzmir, Turkey

 Münire Canan Çiçek1,  Rasim Onur Karaoğlu1,  Mehmet Nuri Yakar2,  Namigar Turgut1

An Overview of Anesthetic Agents used in Anesthesia Practices

DO I: 10.4274/eamr.galenos.2022.66376

https://orcid.org/0000-0003-1299-7103
https://orcid.org/0000-0002-9383-0673
https://orcid.org/0000-0002-3542-3906
https://orcid.org/0000-0003-0252-3377


155

Çiçek et al. An Overview of Anesthetic AgentsEur Arch Med Res 2022;38(3):154-160

clinical medicine and dentistry (6). It is the least effective of the 
available inhalation agents because it requires a concentration 
of 104% to reach the Minimum Alveolar Concentration (MAC). 
Its low potency and its both anesthetic and analgesic activities 
cause it to be preferred as an adjuvant in balanced anaesthesia 
(7). It helps anesthesia induction by reducing the MAC value of 
the agent it is used with due to both primary and secondary 
gas effects. By inhibiting methionine synthase, it impairs 
vitamin B12 and folate metabolism (7). Most of the side effects 
of N

2
O are due to the irreversible inhibition of methionine, 

folate, and vitamin B12, which plays an important role in DNA 
synthesis (8). With long-term N

2
O application, conditions such as 

megaloblastic anemia, neurological toxicity and teratogenicity, 
immunodeficiency and impaired wound healing can be observed 
(7). In large-scale studies performed in non-cardiac surgeries, 
there are different opinions about whether there is an increase 
in the risk of cardiovascular complications such as myocardial 
infarction and venous thromboembolism in the postoperative 
period (8-10). Some studies have shown that N

2
O increases 

pulmonary arterial pressure, and its use should be avoided in 
patients with pulmonary hypertension (10,11). The low blood-
gas partition coefficient of N

2
O causes it to replace nitrogen and 

oxygen in hollow chambers in the body, including the lungs. 
Such a high diffusion capacity can lead to diffusion hypoxia 
and an increase in the existing pneumothorax area during its 
elimination from the body (7,12). In order to prevent diffusion 
hypoxia, 100% oxygen should be given to the patient in the first 
few minutes following the discontinuation of N

2
O therapy (4). 

In terms of postoperative complications such as pneumonia, 
pneumothorax or pulmonary embolism, the ENIGMA-I study 
showed statistically significant results in patients receiving N

2
O, 

while there was no statistically significant increase in respiratory 
events in patients receiving N

2
O in the ENIGMA-II study (8,9). 

Although studies show that the development of postoperative 
cognitive dysfunction is not observed in patients using N

2
O, 

there is not enough research in this area (13). In recent years, 
recreational abuse of N

2
O has become increasingly common. 

N
2
O abuse can damage multiple systems, especially the nervous 

system, and the exact mechanism of its toxicity is controversial 
(14,15). It can be used in obstetric gynecology due to its analgesic 
effects (10,16). Due to its possible neurotoxic effects, its use in 
the first trimester is not recommended (17).

1.2. Isoflurane (C3H2ClF5O, methyl ethyl ether)

Isoflurane is a non-flammable volatile anesthetic with a pungent 
ether-like odor and is the structural isomer of enflurane (18). 
Its pungent odor limits its induction by inhalation (19). Its 
effect in the central nervous system (CNS) strengthens GABA 

and glycine receptor activities, while it inhibits receptor activity 
in NMDA glutamate receptor subtypes (19). Although it has 
a minimal effect on the left ventricle, it can cause a dose-
dependent decrease in systemic vascular resistance (SVR) with 
the β-adrenergic stimulation it causes, resulting in a decrease 
in preload and thus cardiac output. Compensation for the 
decreased cardiac output can be achieved with the increase 
in heart rate caused by it (18,19). A decrease in SVR may cause 
coronary dilatation, leading to what is known as the “coronary 
steal phenomenon” (18,19). It should be kept in mind that all 
halogenated volatile anesthetics, including isoflurane, may cause 
malignant hyperthermia in patients with a personal or family 
history (18-20). In studies, there are also animal models showing 
that both i.v. and inhalation anesthesia promotes neuronal 
apoptosis (21,22). Due to the different biological systems, it is 
difficult to transfer the neurotoxic effects of volatile anesthetics 
from animals to humans (19). This leads to more research on 
the known neuroprotective and neurotoxic effects of volatile 
anesthetics (19). Recent studies have shown that isoflurane has 
neuroprotective properties. Especially in studies with neonatal 
hypoxic ischemic brain injury, it has been found that early 
isoflurane treatment has neuroprotective effects (23,24). 

1.3. Sevoflurane (C4H3F7O, methyl isopropyl ether)

Sevoflurane, discovered in 1971, is a halogenated volatile 
anesthetic that is used for the induction and maintenance of 
general anesthesia in pediatric patients and in inpatient or 
outpatient surgery in adults (25). It can provide hypnosis, amnesia, 
analgesia, akinesia, and autonomic blockade during surgical 
and procedural interventions (25). It has a colorless volatile form 
with a mild pleasant odor (26). Although its working mechanism 
is not clear, it shows its effect similar to other volatile anesthetics 
by increasing the activity of inhibitory postsynaptic receptors 
such as GABA and glycine in the CNS or by suppressing excitatory 
stimuli such as NMDA (18,25). It causes a dose-dependent 
decrease in blood pressure and cardiac output by reducing 
SVR (25). Like all volatile anesthetics, it is irritant in terms of 
respiratory tract, can trigger cough and laryngospasm, but these 
properties are rarely observed due to its sweet smell and less 
sharpness compared to others (25). By causing dose-dependent 
vasodilation in the cerebrovascular area, it increases cerebral 
blood flow and intracranial pressure, while decreasing cerebral 
metabolic rate (25). Sevoflurane is an agent with a potential 
theoretical risk of developing hepatotoxicity, nephrotoxicity, and 
neurotoxicity (25). In recent studies, it has been reported that 
sevoflurane reduces myocardial ischemia-reperfusion injury and 
infarct size (27). In addition, there is evidence that it can reduce 
neuronal damage and cerebral ischemia-reperfusion damage 
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due to its anti-inflammatory and neuroprotective effects (28-
30). It contributes to the preservation of neurocognitive skills 
by reducing neuron apoptosis and antioxidant stress (31). Like 
other volatile anesthetics, sevoflurane is metabolized in the liver 
by a specific cytochrome enzyme (CYP-2E1) (19). Hepatotoxicity 
has been reported very rarely due to the low percentage of 
metabolized sevoflurane (32,33). Today, there are studies 
reporting that it is used for sedation in intensive care units as 
well as being used as a maintenance in general anesthesia (34).

1.4. Desflurane (C3H2F6O, methyl ethyl ether)

Desflurane was synthesized in the 1970s. Its only structural 
difference from isoflurane is that it contains fluorine atoms 
instead of chlorine. This minor change causes the vapor pressure 
of desflurane to be 681 mmHg at 20 °C and boiling at room 
temperature in high altitude regions. A pressure-temperature 
controlled vaporizer specific to desflurane was developed due 
to this feature (18,35). Due to its sharp smell, it is preferred for 
anesthesia maintenance rather than induction. It is very slightly 
soluble in blood due to its blood/gas partition coefficient of 0.42. 
This feature causes rapid induction and recovery (18,35). Similar 
to sevoflurane and isoflurane, a decrease in blood pressure and 
a minimal increase in heart rate are observed with a decrease 
in SVR (35). Dilation of cerebral arteries causes a decrease in 
cerebral metabolic rate and an increase in intracranial pressure 
(35). In recent studies, it has been reported that delirium and 
respiratory complications may be encountered more frequently 
than other agents, especially in the pediatric population (36-38). 
In studies on the geriatric population, it was determined that 
postoperative recovery was faster when desflurane was used (39).

1.5. Xenon (Xe)

Xe is a colorless, odorless, non-explosive noble gas first 
discovered in 1898 for use in spacecraft and flashlights (40). Its 
anesthetic effect was first discovered after “poisoning” in deep-
sea divers in hyperbaric conditions and was first applied as an 
anesthetic by Stewart Cullen in 1951 (40). It is thought to show its 
effect by competitive inhibition with glycine and through NMDA 
receptor antagonism (40). It is obtained from the atmosphere 
after a very expensive distillation process and special anesthesia 
devices are used for its application (18). Side effects frequently 
associated with the use of Xe gas for inhalation as a general 
anesthetic in the literature include increased intracranial 
pressure, bradycardia, nausea and vomiting (41-43). It has a 
pharmacokinetic profile suitable for anesthesia with its very low 
blood-gas partition coefficient (Xe: 0.115, N

2
O, 0.47; sevoflurane, 

0.65; desflurane, 0.42), regardless of exposure time (44). Since 
it is excreted from the lungs without biotransformation by the 

kidney or liver systems, it is thought that it may be preferred in 

some patients in whom liver or kidney functions are reduced 

(44). Due to its hemodynamic stability, recent studies have 

shown its superiority in cardiac and non-cardiac major surgeries, 

especially in the elderly population, in terms of postoperative 

cognitive dysfunction and rapid postoperative recovery. It is 

environmentally friendly and has no ozone-depleting effect, but 

its high cost is an important limiting factor in clinical practice 

(45).

2. Intravenous Anesthetics

The main effect of i.v. anesthetics is sedation and hypnosis caused 

by CNS depression. Their effects begin quickly, most of them are 

more lipid soluble and have a high cerebral perfusion rate. The 

end of their effects is the result of redistribution. They can be 

used alone in short interventions, as balanced anesthesia with 

inhalation anesthetics or as total i.v. anesthesia with opioids.

2.1. Barbiturates

Barbiturates depress the reticular activating system, reduce 

intracranial pressure in clinical doses, and do not have muscle 

relaxant properties. They are used in status epilepticus because 

of their anticonvulsant effects.

The sodium salts of barbiturates are water-soluble but 

markedly alkaline and relatively unstable. The anesthetic 

effects of barbiturates are culminated by the reduction of the 

drug from the central lipophilic brain tissues to the peripheral 

lean muscle compartments. They cause further reduction in 

cerebral oxygen consumption, so the decrease in cerebral 

blood flow is not harmful, they can protect the brain against 

transient focal ischemia attacks. Although the general idea is 

to cause hyperalgesia after barbiturate administration, recent 

studies question this situation. Past studies evaluating the 

effects of thiopental on pain are conflicting (46). Recent studies 

have shown that thiopental has a neuroprotective effect on 

postoperative neurological complications (47,48). The use of 

new barbituric acid derivatives as antioxidant, antibacterial and 

anti-proliferative agents has become questionable (49-52).

2.2. Benzodiazepines

Benzodiazepines bind to a different site of the same receptor 

groups as barbiturates in the CNS. Binding to the GABA
A 

receptor, benzodiazepines increase the frequency of opening 

of associated chloride ion channels. Their chemical structure 

consists of a benzene ring and a seven-membered diazepine 

ring. Substitutions at various positions on these rings affect 

potency and biotransformation.
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Metabolites of benzodiazepine biotransformation are excreted 

mainly in the urine. Prolonged sedation may be observed in 

patients with renal failure due to the accumulation of alpha 

hydroxymidazolam, a conjugated metabolite of midazolam 

(53). It has minimal cardiovascular depressant properties, 

arterial blood pressure, cardiac output, and peripheral vascular 

resistance are usually slightly reduced. Cerebral oxygen 

consumption decreases cerebral blood flow and intracranial 

pressure, but not as much as barbiturates. It has been shown that 

long-term use of benzodiazepines leads to irreversible cognitive 

dysfunction and dementia, especially in elderly patients (54-58). 

There are studies related to malignancy surgery, suggesting that 

midazolam may have an antineoplastic effect through different 

mechanisms (59-62). Remimazolam is an ultra-short-acting 

benzodiazepine derivative due to its rapid onset, rapid recovery 

time and degradation by non-specific tissue esterases (63-65).

Remimazolam effects are achieved by binding to the standard 

benzodiazepine site on the GABA
A
 receptor (66). It has a superior 

safety profile with features such as minimal cardiorespiratory 

side effects, no injection pain, and metabolism unaffected 

by liver or kidney function. Although many areas of use are 

foreseen, including anesthesia induction and maintenance, and 

sedation in intensive care patients, its cost-effectiveness limits 

the use of the drug.

2.3. Ketamine

Ketamine, an NMDA antagonist, inhibits the effects of excitatory 

neurotransmitters in the CNS. Functionally, it separates the 

thalamus from the limbic cortex. While some neurons of the 

brain are inhibited, others are tonically excited. Clinically, 

this dissociative state of anesthesia causes patients to appear 

conscious but unable to evaluate and respond to sensory input. 

Even subteratopic doses of ketamine can be hallucinogenic, 

clinically it is administered with small doses of midazolam for 

amnesia and sedation. It is a good option for i.v. anesthesia in 

patients with hypovolemia and trauma, in whom ketamine’s 

tendency to produce sympathetic stimulation is particularly 

beneficial. It is a stereoisomer. The S isomer is superior to the 

R isomer with its increased anesthetic potency and decreased 

psychomimetic side effects (67,68). The accepted conventional 

belief about ketamine is that ketamine increases cerebral oxygen 

consumption, cerebral blood flow, and intracranial pressure. 

Although this situation limits its use in intracranial traumas 

and intracranial space-occupying lesions, recent publications 

question these effects of ketamine (69-71).

2.4. Etomidate (R 16659)

Etomidate depresses the reticular activating system and mimics 

the inhibitory effects of GABA. Etomidate (R 16659) is a potent 

GABA
A
 receptor agonist. Like ketamine, it is racemic. Unlike 

barbiturates, it has disinhibitory effects on parts of the nervous 

system that control extrapyramidal motor activity, so myoclonus 

is seen between 30-60% in induction. It has been shown that 

dexmedetomidine can effectively prevent the incidence of 

etomidate-induced myoclonus (72). Cardiovascular effects are 

minimal. Compared to other agents for rapid serial intubation, 

it is a superior agent in terms of hemodynamic stabilization 

(73,74). It decreases cerebral metabolic rate, cerebral blood flow 

and intracranial pressure. Postoperative nausea and vomiting 

are more common than barbiturates and propofol, and it has no 

analgesic effect. Since induction doses of etomidate temporarily 

inhibit the enzymes involved in the synthesis of cortisol and 

aldosterone, it has been observed that it causes adrenocortical 

suppression, especially in cases of long-term infusion, especially 

in patients with sepsis (75). ABP-700, newly developed in drug 

studies, is an etomidate analogue with a short half-life due to 

its rapid degradation and inactive metabolites. Although the 

frequency of nausea, vomiting and adrenocortical suppression is 

less than that of etomidate, the incidence of involuntary muscle 

movements and seizures is not less than etomidate, which limits 

the use of ABP 700 for now (76-79).

2.5. Propofol (C12H18O, 2,6 diisopropylphenol )

Propofol allosterically increases the binding affinity of GABA to 

the GABA
A
 receptor. It consists of a phenol ring to which two 

isopropyl groups are attached. It has been shown in many studies 

to reduce postoperative complications and oxidative stress, which 

leads to faster recovery, and may therefore be the induction 

agent of choice in the right clinical setting (80,81). When used 

for long-term sedation, lipemia causes metabolic acidosis and 

propofol infusion syndrome with death, especially in children 

and young adults (82). It has been shown that chemotherapeutic 

drugs can enhance their anti-neoplastic effect and inhibit tumor 

growth and metastasis in in vivo animal models (83,84).

The pharmacological activity of fospropofol, a prodrug of 

propofol, results from its degradation by alkaline phosphatase 

and the release of its active molecule propofol. Compared to 

propofol, the duration of peak effect is longer. Therefore, side 

effects such as hypotension and respiratory depression are less 

common in patients compared to the propofol bolus. Another 

advantage of propofol is that it does not cause a burning 
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sensation in i.v. administration, but the paresthesia and itching 

sensation after drug administration and the late onset of its 

effect limit its clinical use (85-87).

2.6. Dexmedetomidine (C13H16N2) 

Dexmedetomidine is a potent selective α2 agonist agent with 
sedative, analgesic and anxiolytic properties. It has a short 
distribution half-life of six minutes. Despite the side effects of 
hypotension and bradycardia, it is quite safe for short-term 
sedation. Its use in patients in the process of weaning from 
mechanical ventilation in the intensive care unit is very important 
in terms of patient comfort (88). Its use as a sedative agent in 
perioperative and intensive care units may provide advantages, 
especially in elderly patients, by reducing the incidence of 
postoperative delirium and shortening the discharge time (89-
91). Although recent studies give different results regarding 
its effects on malignancy progression, they emphasize that it 
facilitates metastasis due to inducing angiogenesis (91-93).

CONCLUSION
As a conclusion; the process, which started with the discovery of 
the anesthetic properties of diethyl ether by William Morton in 
1846, as the beginning of anesthesia and inhalation anesthesia 
in the medical world, continued to develop with the discovery 
of many anesthetic agents. New agents will allow us to leave the 
traditional understanding of anesthesia in the background and 
allow us to respond more appropriately to the increasing elderly 
population and increasing population with minimal effects on 
recovery time and cardiovascular side effects.
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